
Estimation of the return period of rockfalls according to the block
size
Valerio De Biagi1, Maria Lia Napoli1, Monica Barbero1, and Daniele Peila2

1Department of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Torino, Italy
2Department of Environmental and Infrastructural Engineering, Politecnico di Torino, Torino, Italy

Correspondence to: Valerio De Biagi (valerio.debiagi@polito.it)

Abstract. With reference to the rockfall risk estimation and the planning of rockfall protection devices one of the most critical

and most discussed problems is the correct definition of the design block taking into account its return period. In this paper, a

methodology for the assessment of the design block linked with its return time is proposed and discussed, following a statistical

approach. The procedure is based on the survey of the blocks already detached from the slope and accumulated at the foot of

the slope and the available historical data.5

1 Introduction

Rockfall is one of the most critical slope instabilities because it can be highly destructive and unpredictable. The analysis of

this phenomenon is very difficult because it is affected by aleatory variability (irreducible natural variability) and epistemic

uncertainty (lack of knowledge). For these reasons, probabilistic methods are the suitable approaches for modeling rockfall.

When risk analysis has to be performed for forecasting and protection purposes, the size of the involved blocks and the10

corresponding return period are the most important variables among the ones that characterize the phenomenon (Peila et al.,

1998, 2006; Peila and Ronco, 2009).

Modern design approaches for buildings, for example, aim at guaranteeing the structural safety throughout its expected life.

In such reliability-based framework, the buildings have to be robust, i.e., to support forces due to anthropic and natural hazards

without being significantly damaged. Proper design processes for common natural hazards, such as extreme winds or seisms,15

are already present in the building codes (Elishakoff, 1999; ISO, 1998; Leporati, 1979; Madsen et al., 2006; Melchers, 1999);

these define the magnitude of the external force on the base of the probability of exceeding such intensity during the design

life of the structure. In addition, the structural safety must be guaranteed on the base of the consequences caused by natural

hazards on the structure (vulnerability).

Dealing with natural hazards, one of the common ways to input the external forces applied to the structures is to establish a20

link between the magnitude of the forces and the corresponding return period. Larger return period implies higher intensity in

the force. In a recent work, De Biagi et al. (2016a) have proposed a reliability-based design procedure for structures subjected

to snow avalanche hazard.
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In the design of engineering works that must protect a village or a road from falling rocks, e.g., net fences or embankments,

at present, the size of the falling block used in the modeling is not linked to its probability of occurrence, i.e., the return period

of a block with such volume. The most frequently applied approaches refer to an analysis of the blocks already collapsed

integrated with the site surveying on the slope and a choice of the design falling block among them. The adaptation of the well-

known procedures to the modern design practice requires that the size of the falling blocks has to be related to its probability5

of occurrence, and viceversa.

Examples of volume-frequency laws are proposed in the literature. These relationships are obtained from the analysis of a

large number of rockfall events for which each observed event is dated and the volume of the fallen blocks is estimated. This

allows to draw a volume frequency curve in which each point corresponds to an observation. In general, precise catalogues with

a large number of events are rare because the road owners or the territorial administrations started the records of events, which10

have large return periods, only some tens of years ago. For common uses, e.g., design of protective devices or risk estimation,

for which there are no long records of events nor detailed surveys onsite, no operative procedures are consolidated and the

designer develops the project following his personal experience. In any case, the choice of the “characteristic block volume”

(design volume) has to be done by designer’s own engineering judgement. For this reason, it is affected by subjectivity.

With the aim to contribute to the overcoming of this design problem, this paper proposes a methodology for estimating the15

volume frequency relationship that can be used for deriving the size of the design falling block having a prescribed return

period. The procedure, which is described in detail in Section 3, is based on the data reported in rockfall inventories and on

surveys at the foot of the slope, managed following a statistical procedure.

2 Power laws in rockfall analysis

Statistical analysis of historical data or experimental tests related to a certain natural phenomenon gives evidence that it is20

possible to deduce power laws that link the magnitude of the event to its frequency. These mathematical relationships can be

used for predicting type, extent, return time and magnitude of future events.

In the Fifties, Gutenberg and Richter (1956) observed that there was a relationship between cumulative number of earthquake

events exceeding a given value of magnitude N (m≥M) and the magnitude itself. They formulated the following law:

logN (m≥M) = α−βM (1)25

where α e β are site-dependent constants. More recently, as for earthquakes, statistical analyses of historical data sets have

been widely applied to derive the recurrence rate of events of given magnitude for other natural phenomena such landslides,

rockfalls, snow avalanches, etc. (Dussauge-Peisser et al., 2002; De Biagi et al., 2012; Corominas et al., 2014).

The analysis of historical data, which are available in public archives or catalogues, is therefore extremely important for the

study of natural phenomena. With particular reference to landslides and rockfalls, this statistical approach has been recently30

studied and applied by several authors in many mountain sites. Research has mainly focused on the analysis of the volume

distribution of rockfall events for the sites of Grenoble, Yosemite Valley, Arly gorges, British Columbia, Hong Kong, Italian
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Apennines, Aosta Valley, Christchurch-Canterbury and La Réunion Island (Dussauge-Peisser et al., 2002; Dussauge et al.,

2003; Keith Turner and Schuster, 2012; Abbruzzese et al., 2009; Brunetti et al., 2009; De Biagi et al., 2016b; Guzzetti et al.,

1994; Lari et al., 2014).

The comparison of the previous studies showed that negative power laws well fit all rockfall recurrence volume distributions.

However, some variability in the values assigned to the power law coefficients does appear. This has been mainly attributed to5

the variability in the sampling procedures of the landslide volumes. At present, no proper test equipment (which provide, as

for earthquakes, objective and reliable values that are comparable from one site to another) and standard procedures have been

defined for the different geological and structural settings where rockfalls may occur (Brunetti et al., 2009).

Rockfall inventories do not always contain quantitative and detailed information and the description of historical events

is often characterized by a low degree of accuracy. For example, in the Yosemite rockfall inventory (Wieczorek and Snyder,10

2004; Guzzetti et al., 2003), which can be considered as one of the largest detailed rockfall inventory, the exact locations

where rockfalls occurred, the detachment areas and the block volumes (or weights) are not always given. More often, size

and triggering information of the events is given in a qualitative and incomplete way; temporal information is not precise.

Rockfalls that occurred within a few hours from the same source area are sometimes listed as the same event, overestimating

its magnitude. In general, a lack of data on smaller boulders subsists while large and more damaging rockfalls were recorded15

regularly. Thus, it is clear that a certain degree of uncertainty and lack of homogeneity in the collected data exist.

Previous considerations, which have to be taken into account in treating historical data, are related to Yosemite Valley but

can be easily referred to almost all of the historical archives (Corominas et al., 2014; Brunetti et al., 2009; Corominas et al.,

2005).

In addition, the temporal length of the observations can affect the recurrence volumetric distribution. In particular, a few20

years time window underestimates larger collapses. Many authors examined the frequency-size distribution of rockfalls and

noted that the cumulative frequency is linearly related to the magnitude (block volume) on a log-log plot. In mathematical

terms, the following power law relationship subsists:

n(v ≥ V ) = aV −b (2)

where n(v ≥ V ) is the frequency of blocks with size larger than V (generally, the size is expressed in m3), while a and b are25

constants: a relates to the frequency of blocks larger than a unit volume (i.e., 1 m3) and b represents the slope of the regression

line, or the fractal dimension (Turcotte, 1997), as sketched in Figure 1. With reference to the example of Figure 1, if the

volumes are expressed in cubic meters, a is the annual frequency of occurrence of a rockfall involving a block larger than 1

m3. In this case, supposing V =2.5 m3, n(v ≥ V ) is the annual frequency of blocks larger than 2.5 m3.

This formulation implies that (i) larger rockfall events are less frequent than those characterized by smaller size and (ii)30

frequency-size distributions are well fitted by a power law only over a given range of volumes. In addition, (iii) the power

law exhibits a deviation from the observed distribution for volumes smaller than a certain value. This discrepancy has been

discussed in the literature. It can be the result of under-sampling of the smallest rockfall events (Brunetti et al., 2009; Stark

and Hovius, 2001). While collapses of considerable sizes are easily identifiable and are almost always recorded, collapses of
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Figure 1. Sketch of a n= aV −b power law relationship.

very small rock blocks, mainly causing no damage, are unnoticed and, especially in the past, they have been rarely reported in

the archives. In addition, the formulation implies that rockfalls of huge sizes can be considered more reliable as much as the

recording time increases.

The values of the parameters of Eqn. 2 are variable. Dussauge-Peisser et al. (2002) propose b=0.45 over a range of volumes

spanning from 101 m3 to 106 m3 and suggest that such parameter is not dependent on the scale of study, slope lithology and5

fracture systems. Other authors propose different values of b, depending on the degree of fracturing: for less fractured rock

masses b=0.40-0.43; for fractured rock masses b=0.65-0.70. In general, the errors in the observations and recordings of rockfalls

less than 10 m3 can be significant. The only reliable studies in this range have been performed by Gardner (1970) and Hungr

et al. (1999), who propose b=0.72. Dai and Lee (2001) studied 2811 landslides and rockfalls and recommend b=0.8. This value

corresponds to the mean obtained from laboratory experiments on the distribution of different rock types fragments (Turcotte,10

1997). Finally, Rousseau (1999), proposes b=1 using seismic monitoring technique. This represents the largest reported value

for parameter b in the available catalogs for rockfalls (Dussauge et al., 2003).

On the contrary, coefficient a exhibits relevant fluctuation from one site to another.

3 Proposed method

A three-steps procedure for deriving a volume-frequency relationship for falling blocks with a reduced number of available data15

is built up and discussed in the following. Some aspects of the proposed methodology result from hydrological approaches in

flood frequency analyses (see Claps and Laio (2003)). The main hypothesis of the procedure is that the temporal occurrences
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(i.e., the events) are considered separately from the deposit volumes distribution in a representative area where the rockfall

phenomenon occurs. We consider the foot of the slope as a representative area.

As described in detail in this section, the required data for deriving a volume-frequency relationship are:

(i) a catalogue of the observed events, i.e., events with quantitative rockfall volume estimates. The catalogue is denoted as

C;5

(ii) a list of measured volumes that may have fallen (or will fall) down in any time (see Ruiz-Carulla et al. (2015) for details

a possible sampling procedure). The list is denoted as F .

Obviously, both the catalogue and the list must be related to the same area of the slope, i.e., its foot. All the blocks in catalogue

C are elements of the list F . In addition, the list F contains also fallen blocks that have not been observed neither recorded.

Because of that, its cardinality, i.e., the number of elements, is larger than the one of C.10

The first step of the analysis consists in choosing “relevant” events within the catalogue C. To this aim, a threshold volume

Vt is identified (details on the choice Vt are provided in Section 3.1) and the elements of the catalogue C are split into two

sets. The events corresponding to a volume equal or larger than the threshold volume Vt are included in a reduced catalogue

C∗ mathematically described as:

C∗ = {e : e ∈ C ∧V (e)≥ Vt}, (3)15

where V (e) is the volume associated to falling event e. The events not satisfying this condition were discarded and, thus, not

considered in the analysis. The list F is treated in the same way: a list F∗ including all the volumes equal or larger than the

threshold volume Vt is set up:

F∗ = {s : s ∈ F ∧V (s)≥ Vt}, (4)

where V (s) is the volume associated to the s-th record of the survey at the foot of the slope. As before, the surveyed volumes20

smaller than Vt are not further considered in the analysis.

The second step of the analysis consists in the choice of two probabilistic models. One should be able to describe the

temporal occurrences of the events of catalogue C∗, the other to describe the distribution of the surveyed volumes in the list

F∗. It is assumed that the observed events are considered independent if the threshold value, Vt, is sufficiently high. Thus, the

temporal occurrences can be described with a rare events probabilistic law, i.e., a Poisson distribution. The block sizes at the25

foot of the slope follow a power law, as previously detailed. A Generalized Pareto Distribution (GPD) is adopted to describe

the sizes of the surveyed blocks in the list F∗. The GPD has two degrees of freedom and represents a good compromise

between the quality of the fitting (which, in general, increases as much as the number of degrees of freedom increases) and the

robustness of the model (which depends on the number of observations). GPD is chosen since it well fits the records of the

list F∗, being a power-like distribution, but other probabilistic distributions can be adopted and the proposed procedure easily30

adapted (Burnham and Anderson, 2003).
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The combination of the two proposed statistical laws allows to determine the return period of a block of a given magnitude,

similarly to whatClaps and Laio (2003) did in hydrological studies. The falling volume with return period T , vT , is equal to:

vT = F−1
V

(
1− 1

λT

)
, (5)

where F−1
V (·) is the inverse of the cumulative density function of the probabilistic distribution describing the size of the

surveyed blocks, i.e., the Generalized Pareto Distribution, λ is the annual mean number of events.5

The third step of the analysis consists in the estimation of the parameters of the statistical laws by means of the measured

rockfall data contained in C∗ and F . The former gives the parameter of Poisson distribution, while the latter the parameters of

the Generalized Pareto distribution.

3.1 Definition of the threshold volume

The catalogue of the events C contains all the recorded events gathered in a time window, i.e., the beginning and the end of10

the observation period. For sake of simplicity we consider that the end of the catalogue C coincides with the present time. The

catalogue has a temporal length τ (C) = t and is composed by events related to both small and large rockfall phenomena.

Since the recording of the events is related to in-situ observations after the occurrence, events involving small rock blocks

are not always recorded. Therefore, there is the possibility that the catalogue C contains only a part of these small events. This

fact was considered in the proposed analysis with the introduction of a threshold volume, Vt, defined as the minimum size of15

a fallen block that has always been observed and recorded (after its occurrence). This means that the threshold volume is not

necessarily the smallest volume in the catalogue of the events C. This concept is similar to the so called perception threshold

in flood frequency analysis (Claps and Laio, 2003).

A reduced catalogue, which is mathematically described by Eqn. (3), is created. The cardinality of C∗, i.e., |C∗|, is equal to

n∗ and, as already specified, the events are considered independent. The value of the threshold volume influences the temporal20

length of C∗, i.e,

t∗ = τ(C∗) = t+
t

2n∗
. (6)

The term t/n∗ represents the annual mean frequency of the events of the reduced catalogue.

3.2 Probabilistic model describing the temporal occurrence of the events in C∗

Under the hypothesis of independence between the observations, the rockfall phenomenon is considered to be a complete25

random process for which any realization consists of a set of isolated stochastically independent points in time (McClung,

1999). In statistics, such process is known as Poisson point process. Therefore the events of the reduced catalogue C∗ within

the temporal range t∗ are considered as a realization of a Poisson point process. The mathematical relationship between the

probability of occurrence of n events during the observation period t∗, i.e., the probability mass function, is:

p(n) =
e−λt

∗
(λt∗)n

n!
, (7)30
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Figure 2. Sketch of the catalogues of events C and C∗. The events which volume V (e) is larger than the threshold volume Vt are indicated

with blue bullets, those smaller than the threshold volume Vt are indicated with black bullets.

where λ > 0 is the so-called parameter of the Poisson distribution. The hypothesis of independent and Poisson distributed

rockfall events is essential to relate the cumulative density function of the sizes of the surveyed blocks, FV (v), to that of the

annual maxima, GV (v), by means of:

GV (v) = e−λ[1−FV (v)]. (8)

GV (v) represented the annual probability of occurrence of a rockfall characterised by a block of volume smaller than v.5

3.3 Probabilistic model describing the record distribution in F∗

The probabilistic model of the volumes distribution at the foot of the slope is determined using the records contained in the

list F∗. As discussed, only blocks larger than the threshold volume, Vt, are considered. The Generalized Pareto Distribution

(GPD) is used and it has cumulative density function equal to:

FV (v) = 1−
(

1 + ξ
v−µ
σ

)−1/ξ

, (9)10

where σ, ξ and µ are scale, shape and location parameters, respectively. The scale parameter is always positive and the distri-

bution has support v ≥ µ for ξ ≥ 0 or µ≤ v ≤ µ−σ/ξ for ξ < 0. The location parameter bounds the distribution. Since the

volumes smaller than Vt are not considered, the location parameter is equal to threshold volume, i.e., µ= Vt. The inverse of

Eqn.(9), to be used in Eqn.(5), is equal to:

v(FV ) = F−1
V (FV ) = µ+

[
(1−FV )−ξ − 1

] σ
ξ
. (10)15
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In the present framework, substituting FV = 1− 1
λT , the volume, v(T ), corresponding to a return period T years is:

v(T ) = µ+
[
(λT )ξ − 1

] σ
ξ

(11)

and the return period, T (v), corresponding to a volume v is:

T (v) =
1
λ

(
1 + ξ

v−µ
σ

)1/ξ

. (12)

By consequence, the annual frequency of occurrence, which is the reciprocal of the return period, is:5

1
T

= λ

(
1 + ξ

v−µ
σ

)−1/ξ

(13)

3.4 Evaluation of the parameters of the distributions

An estimate of the parameter λ of the Poisson distribution was obtained through the maximum likelihood method. The maxi-

mum likelihood estimate is an unbiased estimator of λ and was determined as:

λ=
n∗

t∗
, (14)10

i.e., as the ratio between the cardinality and the length of the time window of the catalogue C∗.

While the estimates of the scale and shape parameters, ξ and σ respectively, are determined through a maximum likelihood

scheme after imposing that the location parameter, µ, is equal to the threshold volume.

4 Examples

With the aim to better explain the proposed methodology, it was applied to two areas affected by rockfalls. Both are located in15

Aosta Valley, Northwestern Italian Alps, as shown in Figure 3: Buisson and Becco dell’Aquila.

4.1 Buisson site

Buisson site (UTM: 392267, 5077165, 32, T) is located on the left bank of Marmore torrent in the municipality of Antey-Saint-

André in Valtournenche at an altitude ranging from 1130 m to 1612 m a.s.l. The study slope is mainly composed of debris

which extends down the slope to the alluvial plain and is covered by irregular (from scanty to very dense) vegetation. The site20

is close to a camping area, for which protection works and, thus, records of rockfall events, were performed since 1994, when

a large block (3 m3) hit a part of the area.

A detailed survey in the deposition area was performed: 60 blocks with volume ranging from 0.02 to 308 m3 were observed

and their position recorded through GPS. These data constitute the list F (Table 1). The analysis of the occurrences was done

after the historical catalogue of the Geological Service of Aosta Valley region that reports 5 events in the site from 1994 (Sep25

1994, Mar 1995, Sep 1996, Apr 1998, Oct 2002). Because of the continuous monitoring after the construction of the camping,

all the events occurred after 1994 were recorded and, thus, considered in the catalogue C and the reduced catalogue C∗, which

8
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Figure 3. Map of the two test sites location in the Northwestern Italian Alps. “Buisson” site is shown with red bullet in subfigure (a), “Becco

dell’Aquila” site is shown with red bullet in subfigure (b).

are coincident. The threshold volume Vt was set equal to 0.5 m3, i.e., the minimum size of the observed events in C. The

number of events considered in the analysis is equal to n∗ = n= 5. The corrected time t∗ is computed through Eqn. (6) and is

equal to 25.3 years. Eqn. (14) gives λ= 0.1976.

The reduced list, F∗, was determined after the definition of the threshold volume, see the right-hand side column of Table 1.

The volumes of the reduced list served for the evaluation of the parameters of the Generalized Pareto Distribution, which5

estimates are reported in the bottom part of Table 2.

Figure 4 plots the volume-annual frequency of occurrence relationship given in Eqn. (13). Even if the theory allows the def-

inition of all the possible sizes bigger than Vt, an upper threshold value can be introduced taking into account the geostructural

surveying of the rock slope that can give evidence of the maximum block size.

4.2 Becco dell’Aquila site10

Becco dell’Aquila site (UTM: 341345, 5074157, 32, T) is located on the eastern side of Mont Chétif (2343 m a.s.l.) in the

municipality of Courmayeur at an altitude ranging from 1230 m to 1800 m a.s.l. The study area is largely composed of

9
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smaller than 0.5 m3 larger than 0.5 m3

0.02 0.08 0.32 0.58 1.9 8.0 58.8

0.03 0.10 0.39 0.59 4.1 8.0 132.2

0.03 0.11 0.40 0.66 4.1 10.0 308.6

0.03 0.11 0.40 1.1 4.2 11.8

0.04 0.12 0.40 1.1 4.5 18.0

0.04 0.14 0.42 1.3 4.8 18.2

0.05 0.19 0.48 1.4 5.0 18.6

0.05 0.20 1.6 5.1 19.2

0.07 0.21 1.8 6.9 21.6

0.07 0.24 1.8 7.5 24.0

Table 1. Volumes of the surveyed blocks in the deposition area of Buisson site. The blocks are divided into two classes, depending on their

size (smaller or larger than Vt). All the blocks belong to the list F ; blocks larger than Vt belong to the reduced list F∗.

Obs. 1994-2016

t 23 yrs

Vt 0.5 m3

n 5

n∗ 5

t∗ 25.30 yrs

λ 0.1976

ξ 0.994

σ 4.418

µ 0.5

Table 2. Input and results of the analyses performed on Buisson site. The estimates of the parameters of the distribution are reported in the

bottom rows.

10

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-234, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 5 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



Volume (m3)

10
-1

10
0

10
1

10
2

10
3

A
n

n
u

a
l 
fr

e
q

u
e
n

c
y
 o

f 
o

c
c
u

rr
e

n
c
e

 (
y
r-1

)

1/1000

1/100

1/10

1

Estimated

Figure 4. Volume-annual frequency of occurrence plot related to Buisson site.

Mont Chétif gneisses, which are fine to medium grained rocks, with the dominant bedding planes orientation of the foliation

N 140/50. The site is close to a deposit of aggregates used for concrete production onto which a 20 m3 block fell on May 5,

2012. Despite a large rockfall was recorded in 1903, systematic observations and monitoring activities on the site started in

1998.

An onsite survey was performed in the framework of a risk analysis for the activities at the foot of the slope the block5

volumes were estimated by rough measurements and through the experience of the geologist. Block sizes are grouped into size

classes in a geometric progression following 21/2 with volume, as reported in Table 3.

The historical catalogue of the Geological Service of Aosta Valley region reports 3 events in this site since 1998 (Apr

1998, Apr 2001, May 2012). The size of the fallen blocks is always larger than 5 m3. Considering that the slope is constantly

monitored it is evident that any event bigger than 5 m3 can be immediately observed and recorded. For this reason a threshold10

volume Vt = 5 m3 was adopted. The catalogue C and the reduced catalogue C∗ are coincident, see Table 4 for details.

The number of events considered in the analysis is equal to n∗ = n= 3. The corrected time t∗ is computed through Eqn. (6)

and is equal to 22.17 years. Eqn. (14) gives λ= 0.1353.

Referring to the distribution of the volumes, the reduced list, F∗, was determined after the definition of the threshold volume

(Table 3). The neglected data, i.e., belonging to volume classes smaller than 5 m3, are in italic in Table 3. The estimates of the15

GPD are reported in Table 4.

Based on the previously discussed data it was possible to obtain the volume-annual frequency of occurrence that is reported

in Figure 5 (grey line). A detailed survey of the potential instabilities in the source area showed that the maximum size of the

detachable block is about 200 m3. Similarly, an additional truncated volume-annual frequency of occurrence relationship is

plot (dashed black line).20
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Volume (m3) No. records Volume (m3) No. records

1.000 10 16.000 6

1.414 0 22.627 5

2.000 8 32.000 2

2.828 0 45.255 3

4.000 3 64.000 0

5.657 0 90.510 1

8.000 26 128.000 1

11.314 4 181.019 1

Table 3. List of the grouped volumes of the surveyed blocks on the slope of Becco dell’Aquila site. All the blocks belongs to the list F ; the

blocks that are larger than Vt, in normal font, belong to the reduced list F∗

Obs. 1998-2016

t 19 yrs

Vt 5 m3

n 3

n∗ 3

t∗ 22.17 yrs

λ 0.1353

ξ 0.5509

σ 7.7836

µ 5.0

Table 4. Input and results of the analyses performed on Becco dell’Aquila site. The estimates of the parameters of the distribution are reported

in the bottom rows (the standard deviations are detailed into brackets).

5 Discussions and conclusions

The definition of the relationship between the volumes that can detach from a slope and their return period is a parameter of

paramount importance for a correct design procedure. The proposed methodology allows to compute a volume-frequency law

that can be used in engineering calculations. Two different probabilistic models are considered: one for the Poisson’s point

process related to the occurrences of the events, the other for the fallen block volumes distributions (the Generalized Pareto5

Distribution, which is independent from the rockfall year of occurrence). In order to make these considerations and use these

probabilistic models, hypotheses are necessary.

The two probabilistic models are merged considering the hypothesis that the annual frequency of a rockfall related to the

threshold volume is the parameter λ of the Poisson distribution.
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Figure 5. Volume-annual frequency of occurrence plot related to Becco dell’Aquila site.

The events described by Poisson’s probabilistic models need to be independent. In other words, no causality links have to

subsist. Under this hypothesis, the process is random (Moller and Waagepetersen, 2003). In the framework of rockfalls, the

validity of hypothesis was discussed by McClung (1999) who stated that the interaction between a natural hazard and anthropic

elements (say, vehicles, buildings) is a rare event that can be ascribed to a Poisson process. Similarly, Lari et al. (2014) and

Hantz and colleauges (Hantz et al., 2003; Hantz, 2011) invoke the same assumption.5

Referring to the Generalized Pareto Distribution, the degree of precision of the estimates of the parameters is determined

through a bootstrap analysis (Efron and Tibshirani, 1994; Bengoubou-Valerius and Gibert, 2013). This analysis allows to

determine the variance and the confidence bounds of the parameters of the GPD that fit each reduced list F∗ of the previously

considered rockfall sites. A hundred thousand bootstrap replications are made for each reduced list. For each replication, a

bootstrap sample, i.e., a resampling of the reduced list, is generated and an estimate of the parameters ξ and σ of the fitting10

Generalized Pareto Distribution is made.

From the set of the estimates of the parameters the bootstrap mean, variance and median and the values of 90% and 95%

confidence bounds are determined (Table 5). Note that the estimates of the parameters reported in Tables 2 and 4 are close to

bootstrap medians.

In addition, for each bootstrap replication, once parameters ξ and σ are estimated, the volumes related to different (25 in15

total) return periods between 10 and 1000 years are computed through Eqn. (11). As an example, the histogram of Figure 6

shows the frequency of the 1000 years return period volumes obtained at Becco dell’Aquila: they are well fit by a lognormal

law (red dashed line). The empirical distribution function is plot in the box of Figure 6. The values corresponding to cumulative

probability of 0.05 and 0.95 are identified with squares. These corresponds to the bounds of the 90% confidence interval: in

other words, this means that 90% of the volumes are larger than 73.8 m3 and smaller than 473.2 m3. Similarly, the bounds are20

determined on both sites for all the return periods considered in the range 10-1000 yrs. They are reported in dashed in Figure 7.
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Buisson Becco dell’Aquila

ξ σ ξ σ

Mean 0.937 4.919 0.511 8.104

Variance 0.166 4.511 0.032 2.226

Median 0.944 4.610 0.520 7.897

90% conf.b. (0.186, 1.572) (2.247, 8.481) (0.196, 0.783) (6.088, 10.871)

95% conf.b. (0.093, 1.705) (1.932, 9.563) (0.103, 0.831) (5.821, 11.587)

Table 5. Bootstrap statistical parameters of the estimates of the parameters of the Generalized Pareto distribution related to the two example

sites.

Volume (m3)

0 500 1000 1500 2000

F
re

q
u

e
n

c
y
 (

1
0

3
)

0

1

2

3

4

5

Volume (m3)

0 500 1000 1500 2000

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Figure 6. Histogram of the volumes having 1000 years return period fitted by a lognormal law (red dashed line). The empirical distribution

function is plot in the box: the squares bound the 90% confidence interval.

It results that the width of the 90% confidence interval increases as much as the return period increases. This implies a spread

of the value of the volumes of the blocks. Detailed and long records of the occurred events as well as a proper survey of the

volumes of the blocks would permit to increase the quality of the volume-frequency law and, by consequence, to reduce the

statistical errors in the procedure.

The proposed method allows to define the relationship between the return period and the volume of the blocks. This is a5

key aspect for the modern design approaches based on return period of natural hazards (De Biagi et al., 2016a, 2015) and on

structural robustness (De Biagi and Chiaia, 2013; De Biagi, 2016). The bootstrap analysis has shown that the quality of the

input data can affect the results particularly when long return periods are considered. Hence, in these cases, a critical analysis

of the estimated volumes is required in the design process.
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Figure 7. Results of the bootstrap analysis on the records on Buisson and Becco dell’Aquila sites. The continuous lines are plot from

Eqn. (13) with the parameters reported in Tables 2 and 4. The dashed lines are the bounds of the 90% confidence intervals. In order to easily

compare the two, the bounds of the axes are kept equal on the two plots.
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